ACLED Conflict Pulse Dashboard User Guide

Models:
- The dashboard shows the historical predictions for the ACLED Conflict Pulse Model as well as the prediction made for one week into the future.
- The ACLED Conflict Pulse Model uses a number of factors to make predictions, including information about actors, events, fatalities, and locations of activity.
- Predictions are made for one event type for the selected actor. By using event types, predictions based on past activity are more reliable because the activities are most similar to the event being predicted. The event type used for each actor tends to be the event type that is most common to the selected actor. The event type predicted is listed in the Info Box.

Timeline plot:
- Line: shows the number of events involving the selected actor
- Arrows indicate a predicted increase (up arrow) or no increase (rightward arrow) (can hover for label)
- Color of arrows indicates if the prediction was correct (can be verified by seeing if actual events went up or not)

Map:
- Points are centered on the longitude and latitude centroid for activity for the actor. They are not associated with a predicted location, but are only meant as a general point of location for that actor.
- Arrow indicates if the actor is predicted to have an increase in the number of events next week

Historical accuracy:
- Accuracy is measured over the historical predictions made for the actor and event type combination. The accuracy is measured as the number of correct predictions as a percentage of all predictions for that actor and event type combination. Higher accuracy suggests that the historical data related to this actor and event type are more reliable in predicting future activity for this actor and event type.
Annotated example: Here, the dashboard looks at Islamic State (Syria) activity involving violence against civilians. For the week of 22-29 June, 2020, it predicts “No Increase” in the number of events involving violence against civilians for Islamic State (Syria) -- *a prediction that ended up correct*. Dating back to March, this model has been about 93% accurate in its prediction of “weeks seeing an increase in such events.”